Congratulations on your purchase of a new Leica System GPS500.
View of chapters

Introduction

Design Elements

Data Files and Formats

Terminology of Road Staking

Staking a Road Alignment

Glossary

Index
Contents

Introduction 6
- Activation of the Application 6
- Requirements .. 7

Design Elements 8
- The Horizontal Alignment 9
- The Vertical Alignment 12
- The Cross Section .. 15
- The Cross Section Assignment 17
- The Station Equation 20

Data Files and Formats 22
- The Horizontal Alignment File 23
 - Example for a Horizontal Alignment File in Leica GSI format .. 23
 - Header of a Horizontal Alignment File in Leica GSI format ... 24
 - Data line for a principle point in a Horizontal Alignment File in Leica GSI format 25
- The Vertical Alignment File 27
 - Example for a Vertical Alignment File in Leica GSI format ... 27
 - Header of a Vertical Alignment File in Leica GSI format ... 28
 - Data line for a principle point in a Vertical Alignment File in Leica GSI format 29
- The Cross Section (Template) File 31
- Example for a Cross Section File in Leica GSI format .. 31
- Header of a Cross Section File in Leica GSI format .. 32
- Data line for a principle point in a Cross Section File in Leica GSI format 33
- The Cross Section Assignment File 35
- Example for a Cross Section Assignment File in Leica GSI format 35
- Header of a Cross Section Assignment File in Leica GSI format 36
- Data line in a Cross Section Assignment File in Leica GSI format 37
- The Station Equation File 38
- Example for a Station Equation File in Leica GSI format .. 38
- Header of a Station Equation in Leica GSI format ... 39
- Data line in a Station Equation File in Leica GSI format ... 40

Creating RoadPlus project files 41
- Copy the data files to the PCMCIA card 42
- Transferring the data files directly from the PC to the card ... 42
- Transferring the data files to the card using Sensor Transfer in SKI-Pro .. 43
Terminology of Road Staking 44
 The Cut .. 45
 The Fill .. 46
 The Technical Terms ... 47

Staking a Road Alignment 48
 The Coordinate System .. 48
 Receiver set-up .. 49
 Setting the units .. 49
 Starting the Application 50
 Configuring Road Stakeout Parameters 50
 Selecting the Files ... 52
 Staking even stations of the Horizontal Alignment 53
 Staking uneven stations of the Horizontal Alignment 56
 Staking a Cross Section 59
 Staking a Catch Point ... 63

Glossary ... 67

Index .. 72
This manual is an introduction to the application program RoadPlus for the Leica GPS System 500. RoadPlus is a complete road package application primarily intended for staking out of roads. Furthermore, it is also applicable to railways, canals, dams, pipelines or any other project that is definable as curvilinear alignments with optional cross sectional information.

The program supports:

- the staking out of individual points using horizontal and vertical alignments and cross sections.
- station equations.
- cross section assignment by station cross section definition.
- cross section.
- interpolation superelevation.
- widening.
- staking out of catch points.

The application is activated by an access code which is provided by Leica. If the application does not appear on your menu or you are otherwise unable to access it, please contact your Leica representative.
Requirements

You must be familiar with the principles and procedures that are outlined in the manual “Getting Started with Real-Time Surveys” as well as the “Technical Reference Manual”. If the material referenced is not thoroughly understood, it is strongly advised that you review them prior to proceeding with this application program. Within this manual, it is assumed that you are familiar with the operation of the system.
Design Elements

A road surface can be thought of three different types of design elements:

- the horizontal alignment
- the vertical alignment
- the cross section
The Horizontal Alignment

The horizontal alignment defines the road axis of a project.

The **constituting elements** of a horizontal alignment are

- tangents (straight segments)
- circles
- clothoïdes (spiral in/out, curve in/out).

Each constituting element is defined by individual **horizontal design elements** such as station, easting, northing, radius and parameter A.
For the reason of completeness, a short summary of the design elements for horizontal alignment is included in this chapter.

The Tangent - straight line between two points. It's end point is identical with the beginning of a curve or spiral. The tangent is perpendicular to the radius of the curve.

![Tangent Diagram](image)

The Curve - circular curve with constant radius.

![Curve Diagram](image)

Spiral in - spiral transition from tangent to curve.

![Spiral In Diagram](image)

Spiral out - spiral transition from curve to tangent.

![Spiral Out Diagram](image)
Curve in - spiral transition from larger to smaller radius curve.

Parameter A

\[
A^2 = R \times L
\]

- R: radius of the connecting circular curve
- L: length of the spiral in/out or curve in/out

Curve out - spiral transition from smaller to larger radius curve.

Curve in and out are used for combinations such as:

- curve - curve in - curve out - curve
- tangent - spiral in - curve in - curve

whereas spiral in/out always connect a tangent with a curve / curve in / curve out.

Sign convention for curves and spirals:

- centre of curvature to left of centre line: R resp. A < 0
- centre of curvature to right of centre line: R resp. A > 0

Or in words: Looking in the direction of increasing station, apply the "right hand positive rule".
The Vertical Alignment

The vertical alignment gives information about the pattern of heights of the road axis as it is defined in the horizontal alignment.

The **constituting elements** of a vertical alignment are:

- tangents (straight segments)
- circles
- parabolas.

Each constituting element is defined by individual **vertical design elements** such as station, easting, northing, radius and parameter P.
For the reason of completeness, a short summary of the design elements for vertical alignment follows.

The Tangent - straight line between two points. It's end point is identical with the beginning of a curve or spiral. The tangent is perpendicular to the radius of the curve.

The Curve - circular vertical curve with constant radius.

The Parabola - a parabolic vertical curve with constant rate of grade change.

Sign convention for curves and parabolas:
- centre of curvature below the alignment: R resp. $P < 0$
- centre of curvature above the alignment: R resp. $P > 0$
Parameter P - is the reciprocal of the rate of change of grade in the vertical curve. Three formulas for the calculation of P exist:

1. $P = \frac{L}{(G_{\text{out}} - G_{\text{in}})}$

L length as horizontal distance from the beginning to the end of the vertical curve

G_{in} grade of the vertical alignment at the beginning of the vertical curve

G_{out} grade of the vertical alignment at the end of the curve

G_{in} and G_{out} in decimal units (not percent) negative for decreasing elevation with increasing station.

2. $P = \frac{(S - S_0)^2}{2(H - H_0)}$

S any station (chainage) on the parabola

S_0 station (chainage) of the high/low point of the parabola

H height at any station S of the parabola

H_0 height of the high / low point of the parabola

whereas a is a parameter in the general equation for a parabola in mathematics $Y = aX^2 + bX + c$.

Y elevation of vertical curve above datum

X horizontal distance from the beginning of the vertical curve

a one half of the rate of change of grade in the vertical curve

b Grade of the vertical alignment at the beginning of the vertical curve

c elevation above datum at the beginning of the vertical curve
The Cross Section

A cross section gives a profile view. It requires vertical alignment or actual elevation on each station.

The **constituting elements** are straight elements. The points are called vertices. You may optionally define slopes at the vertices most left and most right.

Points are defined by:
- ΔH and ΔV
- ΔH and slope in percentage
- ΔH and slope ratio

ΔH horizontal distance from the centre line

ΔV vertical distance from the centre line (vertical alignment or actual elevation mandatory)
Sign convention for cross sections:

Sign convention is based on horizontal and vertical alignments.
left or below centre line: -
right or above centre line: +

Slope ratio definition:

\[\Delta V : \Delta H \]

cut slope

\[\Delta V \]
\[\Delta H \]

fill slope

\[\Delta V \]
\[\Delta H \]

slope ratio = 1 : slope = \(\Delta V : \Delta H \)

positive for cut slopes
negative for fill slopes

The American style and road editor slope definition is
slope ratio = 1 : slope = \(\Delta H : \Delta V \)
The Cross Section Assignment

Cross sections are assigned to stations not to sections. One cross section is valid until a new one is defined at a station ahead.

Cross section definition can be at any station. The stations need not necessarily correspond to stations where a design element starts or ends.
For the reason of completeness, widening and superelevation as part of cross sections are mentioned here.

Widening - increase / decrease of road width with change in number of lanes. Widening influences the shape of the cross sections. RoadPlus has the ability to interpolate cross sections between beginning and end of the widening.
Superelevation - modification of the normal pavement cross slope. Intended to increase comfort and safety at speed.
Station Equations define adjustments for the stationing values in the Horizontal Alignment File. These adjustments may be necessary when the horizontal alignment has been modified by inserting or removing a constituting element and the stationings in the Horizontal Alignment File were not recomputed. This can be the case when editing manually or with a program which does no automatic recomputation. Simply speaking, station equations define leaving a gap or allow an overlap at certain stations.

The constituting elements in the equations are:

- station back
- station ahead.
Due to removing a constituing element, the sequence of stationing misses some values. If this is the case, a **gap equation** (forward station equation) is required. The station equation is of the form:

\[
\text{Station Ahead } y+yyy = \text{Station Back } x+xxx
\]

The stations between 0+450.725 and 0+550.725 will be ignored.

Where the sequence of stationing repeats some values after inserting a design element, we speak of an **overlap equation** (backward station equation). Then, the equation is of the form:

\[
\text{Station Ahead } y+yyy = \text{Station Back } x+xxx
\]

Stations between 0+450.725 and 0+550.725 exist twice and require re-organizing.
As mentioned in the chapter "Design Elements", a road surface is described by three different design elements - horizontal alignment, vertical alignment and cross section.

RoadPlus reads the elements of each of these components from individual data files that are in the Leica GSI file format. In addition, a file can be created for entering cross-section stations for specific locations such as points needed for staking of superelevation points. Furthermore, if station equations are needed, RoadPlus will read a file created for station equations and apply the appropriate corrections.

Since all RoadPlus project files are in GSI format, the common extensions is .gsi, however they are distinguished by three letter file name prefixes which define the file type and must be used when creating the files. The question marks in the example file names may be replaced with any DOS permitted file name character.

<table>
<thead>
<tr>
<th>File Type</th>
<th>File Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Alignment File</td>
<td>ALN?????.GSI</td>
<td>mandatory</td>
</tr>
<tr>
<td>Vertical Alignment File</td>
<td>PRF?????.GSI</td>
<td>optional</td>
</tr>
<tr>
<td>Cross Section (Template) File</td>
<td>CRS?????.GSI</td>
<td>optional</td>
</tr>
<tr>
<td>Cross Section Assignment File</td>
<td>STA?????.GSI</td>
<td>optional</td>
</tr>
<tr>
<td>Station Equation File</td>
<td>EQN?????.GSI</td>
<td>optional</td>
</tr>
</tbody>
</table>
The Horizontal Alignment File

Example for a Horizontal Alignment File in Leica GSI format

All parameters describing the constituting elements of a horizontal alignment build a so called Horizontal Alignment File. The following is an example of a Horizontal Alignment File in Leica GSI8 format. GSI16 is also supported. A Horizontal Alignment File must contain at least a header and two elements. The last element must be EOP.

```
41....+OEXAMPLE 42....+HZALIGNM 43....+STACoord
11....+00000000 71....+STRAIGHT 72....+00000NON 73....+QP000125 81..10+06000000 82..10+02000000
11....+00198832 71....+00SPIRIN 72....+00122474 73....+QP000123 81..10+06068005 82..10+02186841
11....+00348832 71....+000CURVE 72....+00100000 73....+QP000123 81..10+06150344 82..10+02307751
11....+00450724 71....+00SPIROUT 72....+00100000 73....+QP000123 81..10+06247816 82..10+02304071
11....+00550725 71....+STRAIGHT 72....+00000NON 73....+QP000125 81..10+06310759 82..10+02227794
11....+00619253 71....+00000EOP 72....+00000NON 73....+00000000 81..10+06345023 82..10+02168447
```

Note that each line must end with a space and that a CR/LF is required after the last data line.
Header of a Horizontal Alignment File in Leica GSI format

The header is the first line in the GSI file. There is only one header line per file. The header line takes the following form:

```
41....+0EXAMPLE 42....+HZALIGNM 43....+STCOORD
```

WI 41	Job identification, maximum 8 ASCII characters, may be defined by user.
WI 42	Identification of Horizontal Alignment File, may not be changed by user. This entry must be +HZALIGNM.
WI 43	Identification of principal point type file, may not be changed by user. This entry must be +STCOORD.
Data line for a principle point in a Horizontal Alignment File in Leica GSI format

11....+00198832 71....+00SPIRIN 72....+00122474 73....+QP000123 81..10+06068005 82..10+02186841

<table>
<thead>
<tr>
<th>WI 11</th>
<th>Station (chainage) of principal point. Data units and decimal places are defined by WI 81 and WI 82.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 71</td>
<td>Type of the following geometric element.</td>
</tr>
<tr>
<td>WI 72</td>
<td>Radius 1 for compound curve resp. A parameter for spirals. If the radius point for a curve is to the right of the alignment (looking in the direction of increasing stations), the radius is positive, otherwise negative. Data units and decimal places are defined by WI 81 and WI 82. Default for tangents and End of Project is 00000NON.</td>
</tr>
<tr>
<td>WI 73</td>
<td>Number of cross section assigned to the next geometric element. Corresponds to WI 11 in Cross Section File. A cross section may be assigned to more than one location.</td>
</tr>
<tr>
<td>WI 74</td>
<td>Radius 2 for compound curves. If the radius point for a curve is to the right of the alignment (looking in the direction of increasing stations), the radius is positive, otherwise negative. Data units and decimal places are defined by WI 81 and WI 82.</td>
</tr>
<tr>
<td>WI 81</td>
<td>Easting of principle point.</td>
</tr>
<tr>
<td>WI 82</td>
<td>Northing of principle point.</td>
</tr>
</tbody>
</table>
The following table shows for all possible elements of a horizontal alignment, the variables and predefined names which are required for each WI in a Horizontal Alignment File.

<table>
<thead>
<tr>
<th>Element</th>
<th>WI 11</th>
<th>WI 71</th>
<th>WI 72</th>
<th>WI 73</th>
<th>WI 74</th>
<th>WI 81</th>
<th>WI 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangent</td>
<td>Station</td>
<td>STRAIGHT</td>
<td>00000NON</td>
<td>Cross Section Number</td>
<td>Easting</td>
<td>Northing</td>
<td></td>
</tr>
<tr>
<td>Circular Curve</td>
<td>Station</td>
<td>000CURVE</td>
<td>R</td>
<td>Cross Section Number</td>
<td>Easting</td>
<td>Northing</td>
<td></td>
</tr>
<tr>
<td>Spiral - Tangent to Curve</td>
<td>Station</td>
<td>00SPIRIN</td>
<td>A</td>
<td>Cross Section Number</td>
<td>Easting</td>
<td>Northing</td>
<td></td>
</tr>
<tr>
<td>Spiral - Curve to Tangent</td>
<td>Station</td>
<td>0SPIROUT</td>
<td>A</td>
<td>Cross Section Number</td>
<td>Easting</td>
<td>Northing</td>
<td></td>
</tr>
<tr>
<td>Spiral - Curve to Curve (R1>R2)</td>
<td>Station</td>
<td>0CURVEIN</td>
<td>R1</td>
<td>Cross Section Number</td>
<td>R2</td>
<td>Easting</td>
<td>Northing</td>
</tr>
<tr>
<td>Spiral - Curve to Curve (R1<R2)</td>
<td>Station</td>
<td>CURVEOUT</td>
<td>R1</td>
<td>Cross Section Number</td>
<td>R2</td>
<td>Easting</td>
<td>Northing</td>
</tr>
<tr>
<td>EOP</td>
<td>Station</td>
<td>00000EOP</td>
<td>00000NON</td>
<td></td>
<td>Easting</td>
<td>Northing</td>
<td></td>
</tr>
</tbody>
</table>
The Vertical Alignment File

Example for a Vertical Alignment File in Leica GSI format

All parameters describing the constituting elements of a vertical alignment build a so called Vertical Alignment File. The following is an example of such file in Leica GSI8 format. GSI16 is also supported. An Vertical Alignment File must contain at least a header and two elements. The last element must be EOP.

Note that each line must end with a space and that a CR/LF is required after the last data line.
Header of a Vertical Alignment File in Leica GSI format

The header is the first line in the GSI file. There is only one header line per file. The header line takes the following form:

```
41....+0EXAMPLE 42....+0VALIGNM 43....+STACoord
```

<table>
<thead>
<tr>
<th>WI 41</th>
<th>Job identification, maximum 8 ASCII characters, may be defined by user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 42</td>
<td>Identification of Vertical Alignment File, may not be changed by user. This entry must be +0VALIGNM.</td>
</tr>
<tr>
<td>WI 43</td>
<td>Identification of principal point type file, may not be changed by user. This entry must be +STACoord.</td>
</tr>
</tbody>
</table>
Data line for a principle point in a Vertical Alignment File in Leica GSI format

11....+00300000 71....+000CURVE 72....-01142932 83..10+00422500

<table>
<thead>
<tr>
<th>WI 11</th>
<th>Station (chainage) of a vertical alignment point. The stationing is projected onto a horizontal plane. Data units and decimal places are defined by WI 83.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 71</td>
<td>Type of the following geometric element.</td>
</tr>
<tr>
<td>WI 72</td>
<td>Radius for following curve or P parameter for parabolas. If the radius point for a curve/parabola lies above the centre line, the radius or P is positive, otherwise negative. Data units and decimal places are defined by WI 83. Default for tangents and End of Project is 00000NON.</td>
</tr>
<tr>
<td>WI 83</td>
<td>Elevation of the point.</td>
</tr>
</tbody>
</table>
The following table shows for all possible elements of a vertical alignment, the variables and predefined names which are required for each WI in a Vertical Alignment File.

<table>
<thead>
<tr>
<th>Element</th>
<th>WI 11</th>
<th>WI 71</th>
<th>WI 72</th>
<th>WI 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangent</td>
<td>Station</td>
<td>STRAIGHT</td>
<td>00000NON</td>
<td>Ordinate</td>
</tr>
<tr>
<td>Circular Curve</td>
<td>Station</td>
<td>000CURVE</td>
<td>R</td>
<td>Ordinate</td>
</tr>
<tr>
<td>Parabola</td>
<td>Station</td>
<td>0PARABOL</td>
<td>P</td>
<td>Ordinate</td>
</tr>
<tr>
<td>EOP</td>
<td>Station</td>
<td>00000EOP</td>
<td>00000NON</td>
<td>Ordinate</td>
</tr>
</tbody>
</table>
The Cross Section (Template) File

Example for a Cross Section File in Leica GSI format

All parameters describing the constituting elements of a cross section build a so called Cross Section (or Template) File. The following is an example of such a file in Leica GSI8 format. GSI16 is also supported. A Cross Section File must contain at least one cross section. 200 cross sections per file are allowed. One cross section may be described by up to 64 vertices (points).

```
41....+OEXAMPLE  42....+TEMPLATE
11....+QP000123  35..10-00013000  36..10-00003000
11....+QP000123  35..10-00010000  36..10-00005000
11....+QP000123  35..10-00004000  36..10-00000100
11....+QP000123  35..10+00004000  36..10+00000100
11....+QP000123  35..10+00010000  36..10-00006000
11....+QP000123  35..10+00013000  36..10-00003500
11....+QP000124  35..10-00012000  36..10-00002000
11....+QP000124  35..10-00011000  36..10-00004000
11....+QP000124  35..10-00004000  36..10-00000100
11....+QP000124  35..10+00004000  36..10-00000100
11....+QP000124  35..10+00011000  36..10-00005000
11....+QP000124  35..10+00012000  36..10-00002500
11....+TEMPLATE  35..10-00002000  36..10+00000000  71....+0000FILL  72....+00002000
11....+TEMPLATE  35..10-00005000  36..10+00000000  71....+0000FILL  72....+00002000
...
```

Note that each line must end with a space and that a CR/LF is required after the last data line.
Header of a Cross Section File in Leica GSI format

The header is the first line in the GSI file. There is only one header line per file. The header line takes the following form:

\[41....+0EXAMPLE 42....+TEMPLATE\]

<table>
<thead>
<tr>
<th>WI 41</th>
<th>Job identification, maximum 8 ASCII characters, may be defined by user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 42</td>
<td>Identification of Cross Section File, may not be changed by user. This entry must be +TEMPLATE.</td>
</tr>
</tbody>
</table>
Data line for a vertex in a Cross Section File in Leica GSI format

```
11....+QP000124  35..10+00012000  36..10-00002500
11....+TEMPLATE  35..10-00002000  36..10+00000000  71....+0000FILL  72....+00002000
```

WI 11	Cross section number, corresponds to WI 73 in the Horizontal Alignment File. Cross section numbers need not be in ascending or descending order. However, all data lines having the same cross section number belong together and should be kept together. The data lines for one cross section must be sorted from left to right across the section.
WI 35	Horizontal distance from centre line. A positive distance indicates a point to the right of the centre line. A negative distance indicates a point to the left of the centre line.
WI 36	Height difference from the centre line. A positive height difference indicates a point above the centre line. A negative height difference indicates a point below the centre line.
WI 71	Cross section type; optional.
WI 72	Slope ratio as dH/dV (definition see chapter Cross Section); optional. 0 allowed for all but leftmost and rightmost points in a cross section. Data units defined by WI 35 and WI 36.
The following table shows the two possibilities for defining vertices of a cross section and the predefined names which are required for each WI in a Cross Section File.

<table>
<thead>
<tr>
<th>Element</th>
<th>WI 11</th>
<th>WI 35</th>
<th>WI 36</th>
<th>WI 71</th>
<th>WI 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex (using vertical alignment)</td>
<td>Cross Section Number</td>
<td>Horizontal Offset</td>
<td>Vertical Offset</td>
<td>000000CUT 0000FILL</td>
<td>Slope</td>
</tr>
<tr>
<td>Vertex (without vertical alignment)</td>
<td>Cross Section Number</td>
<td>Horizontal Offset</td>
<td>Elevation</td>
<td>000000CUT 0000FILL</td>
<td>Slope</td>
</tr>
</tbody>
</table>
The Cross Section Assignment File

Example for a Cross Section Assignment File in Leica GSI format

The Cross Section Assignment File defines the stations for the cross sections. Note that the stations given for the cross sections do not necessarily correspond to stations where design elements start or end. The following is an example of such a file in Leica GSI8 format. GSI16 is also supported.

A Cross Section Assignment File belongs to a corresponding Cross Section File. You must have a Cross Section Assignment File when using a Cross Section File. The number of assignments is restricted to 100 per file. A cross section remains valid until a new cross section is assigned. A given cross section may be assigned more than once. Automatic transitions such as width and superelevation are possible.

```
41....+OEXAMPLE 42....+ASSIGNMT 43....+CRSEXAMP
11....+QP000123 71....+00050000
11....+TEMPLATE 71....+00100000
11....+QP000124 71....+00250553
11....+QP000123 71....+00350000
11....+QP000124 71....+00500000
11....+TEMPLATE 71....+00600000
```

Note that each line must end with a space and that a CR/LF is required after the last data line.
Header of a Cross Section Assignment File in Leica GSI format

The header is the first line in the GSI file. There is only one header line per file. The header line takes the following form:

\[
\text{41....+EXAMPLE 42....+ASSIGNMT 43....+CRSEXAMP}
\]

<table>
<thead>
<tr>
<th>WI 41</th>
<th>Job identification, maximum 8 ASCII characters, may be defined by user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 42</td>
<td>Identification of Cross Section Assignment File, may not be changed by user. This entry must be +ASSIGNMT.</td>
</tr>
<tr>
<td>WI 43</td>
<td>Name of the corresponding Cross Section File. The named file must exist in the active directory on the PC card to use an assignment file.</td>
</tr>
</tbody>
</table>
Data line in a Cross Section Assignment File in Leica GSI format

```
11....+QP000123  71....+00100000
```

<table>
<thead>
<tr>
<th>WI 11</th>
<th>Cross section number, corresponds to WI 11 in the Cross Section File and WI 73 in the Horizontal Alignment File.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 71</td>
<td>Beginning chainage for the particular cross section.</td>
</tr>
</tbody>
</table>

For the matter of completion, the following table is added as in the previous chapters.

<table>
<thead>
<tr>
<th>Element</th>
<th>WI 11</th>
<th>WI 71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>Cross Section Number</td>
<td>Station</td>
</tr>
</tbody>
</table>
The Station Equation File

Example for a Station Equation File in Leica GSI format

The Station Equation File re-defines horizontal alignments after adding / removing constituing elements. Station Equation Files are optional for RoadPlus and only required when stationings have not been recomputed after changes in the Horizontal Alignment File. The number of equations per file is limited to 100.

The following is an example of such a file in Leica GSI8 format. GSI16 is also supported.

```
41....+OEXAMPLE 42....+0STAEQTN
41....+00000000 42....+00550725 43....+00450725
41....+00000001 42....+00560000 43....+00460000
41....+00000002 42....+00570000 43....+00470000
...
```

Note that each line must end with a space and that a CR/LF is required after the last data line.

If you use the Leica program RoadEd for your editing, you really should not need to use a station equation file because it will always attempt to adjust the stationings for you as you make changes. You can also force it to re-calculate the stationing using the Recalc Stationings command from the menu. However, RoadEd does support the creation and editing of these files if they are needed. Be aware of the fact that RoadEd does not read the station equation file when it checks for errors in your alignment. You can ignore stationing errors which you have corrected using a station equation file.
Header of a Station Equation in Leica GSI format

The header is the first line in the GSI file. There is only one header line per file. The header line takes the following form:

41....+EXAMPLE 42....+STAEQTN

<table>
<thead>
<tr>
<th>WI 41</th>
<th>Job identification, maximum 8 ASCII characters, may be defined by user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 42</td>
<td>Identification of Station Equation File, may not be changed by user. This entry must be +STAEQTN.</td>
</tr>
</tbody>
</table>
Data line in a Station Equation File in Leica GSI format

41....+00000000 42....+00550725 43....+00450725

<table>
<thead>
<tr>
<th>WI 41</th>
<th>Station equation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 42</td>
<td>Station ahead</td>
</tr>
<tr>
<td>WI 43</td>
<td>Station back</td>
</tr>
</tbody>
</table>

For the matter of completion, the following table is added as in the previous chapters.

<table>
<thead>
<tr>
<th>Element</th>
<th>WI 41</th>
<th>WI 42</th>
<th>WI 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>Station Equation Number</td>
<td>Station Ahead</td>
<td>Station Back</td>
</tr>
</tbody>
</table>
Creating RoadPlus project files

The data files is GSI format can be created either by using the Leica program RoadEd or by converting files from different road packages.

RoadEd is a basic tool intended for quick and easy creation of new alignments or modification of existing ones. It also supports checking alignments for errors and plotting alignments on a graph.

Some commercial road packages such as

- TopoCAD (Sweden)
- Geo11 (Sweden)
- GEOSECMA NT (Sweden)

save the data directly in **GSI format**.

Other road packages have their own file format for which **conversion programs to GSI** exist, for example

- Microstation with Intergraph Inroads as add-on (worldwide)
- CARD1 (Germany)
- REB (Germany)
- MOSS (UK)
- NRG (UK).
Copy the data files to the PCMCIA card

Once the data files have been created, they need to be copied to the PCMCIA card.
If your computer has a PC card reader, you can transfer the data files directly from the PC to the card. If no PC card reader is available on the PC being used, use the sensor transfer option in SKI-Pro.

Transferring the data files directly from the PC to the card

- Format the PCMCIA card in the sensor.
- Insert the card into the PC.
- By using the Explorer, copy the data files from the hard drive of the PC into the directory GSI on the memory card.
Transferring the data files to the card using Sensor Transfer in SKI-Pro

- Switch the **Sensor off**.
- **Remove** the TR500 terminal from the sensor.
- **Connect** the data transfer cable to the serial port of your computer and to the TERMINAL port on the Sensor.
- **Start** SKI-Pro. Go to **Sensor Transfer** under Tools.
- **Right-click** on **Sensor**, go to **Settings...** and check the serial port and the baud rate settings.
- **Right-click** on **Sensor** and choose **Turn GPS Sensor on**.
- **Right-click** on **Sensor** and select **Transfer Any File**.
- **Under Look in:** select the directory where the data files are kept.
- **Under Files of Type:** select **GSI**.
- **Under Sensor device:** select **PC-card**.
- **Under Directory:** select **GSI**.
- Highlight one file to be transferred since only one file can be transferred at a time. Click the **Transfer** button.
- **For transferring the next file,** right-click on **Sensor** again and select **Transfer Any File**. Select as before. Repeat this until all necessary files are transferred.
- **Once the transfer for all files is finished,** right-click on **Sensor** and choose **Turn GPS Sensor off**.

![Image](image-url)
Certain terminology is sometimes used for road staking. They may vary from country to country. In order to make the chapter on staking a road alignment with the program RoadPlus easier to understand, the basic terminology of one common way of road staking is introduced in this chapter. The technical terms are indicated in the drawings and are also explained in words afterwards.
The Cut

- Centre Line
- Original Ground
- Finished Road Level
- Catch Point
- Hinge Point
- Existing ground level to be removed
- Carriageway
- Verge
- Slope
The Fill

- Finished Road Level
- Centre Line
- Original Ground
- Catch Point
- Hinge Point
- Verge
- Carriage Way
- Slope
- Fill to be placed (rocks/earth)
The part of the road on which you drive once the road is finished is called \textit{carriage way} (roadway, travel way).

Next to the carriage way may be the \textit{verge} (shoulder) with usually a slightly higher slope ratio than the carriage way.

The \textit{slope} is next to the verge and can be thought of as linking the road level with the original ground. Its slope ratio is even higher than the one of the verge. A slope starts at the \textit{hinge point}.

The \textit{original ground / surface} is the undisturbed surface before project construction.

The \textit{Finished Road Level} describes the final road.

Since cuts / fills start from the original ground, there must be a physical point on each desired cross section station where the finished design shape of the roadway cut / fill intersects with the existing ground surface. This point is called \textit{catch point}. If the catch point is marking the catch of a cut slope, it is called \textit{top of bank (= top)}. \textit{Toe of bank/slope (=toe)} is the catch point marking the catch of a fill slope.

Usually, the stake of the catch point is gone after the initial cut / fill. An \textit{offset catch point} is often marked nearby as second point. This point is offset from the catch point.
This chapter of this guide explains the operation of the RoadPlus application program covering the following steps:

- Starting the application
- Configuring road stakeout parameters
- Selecting the alignment file
- Staking uneven stations
- Staking cross sections

In order to get the correct result when working with RoadPlus, the GPS jobs must be orientated to the same local grid coordinate system as the alignment to be staked out. This is accomplished by attaching the current coordinate system to the job.

Depending on the coordinate system, you will either use pre-defined parameters or determine the required transformation parameters either on the sensor or in SKI-Pro.

On how to set up a coordinate system and on how to calculate transformation parameters please refer to "Getting Started with Real-Time Surveys" as well as the "Technical Reference Manual" for assistance.
Receiver set-up

RoadPlus is a real-time application.

Therefore, a properly initialised real-time configuration set is required. This means, reference and rover must be set-up properly running a suitable configuration set and the data transfer from the reference to the rover must be working.

For detailed information please refer to „Getting Started with Real-Time Surveys“ and the "Technical Reference Manual".

Setting the units

The GPS sensors must be configured in the same coordinate units as those of the generated gsi files.

Check the sensor settings in panel **CONFIGURE \ Units**.

The units must not be changed while working with RoadPlus.
Starting the Application

Switch the receiver ON > Main Menu
Select 3 Applications ...
CONT (F1)

Panel ROAD+ \ Begin.
CONF (F2) for defining the road stake parameters.

Panel ROAD+ \ Configuration

Remember to ensure that the icon for the accuracy status shows the symbol for high precision navigation.

Panel APPLICATION \ Menu

DFLT (F5)
This sets the default values for all input fields. It may be necessary to adapt them according to your needs.

10 RoadPlus
CONT (F1)

Beg. Station - Beginning station (chainage) from which you want to start working.
End Station - End station (chainage) where you want to finish.
Sta. Incr. - Station increment. Type in the interval at which stations have to be staked.
Vert. Shift - Enter a vertical shift value if required. The value will then be applied to the entire alignment.
Defl. Tol. - Deflection Tolerance. Enter an angle tolerance for deflection angles. If this value is set to zero the deflection tolerance is ignored.
Sta. Tol. - Enter a value for station tolerance. This is the accepted tolerance for the difference between two stations as calculated from the stationing and the coordinates. If this value is set to zero the deflection tolerance is ignored.

Vert. Mode - Choose between Profile/XSec, DTM and OFF. Profile/XSec allows you to stakeout a vertical alignment and cross sections. DTM uses a pre-defined digital terrain model. Set to OFF when only a horizontal alignment has to be staked. The normal mode is Profile/XSec.

Crs. Intrpl. - The cross section interpolation can be switched ON or OFF. In the case of OFF, a cross section assigned to a station in a Cross Section Assignment File will remain effective to the next station where another cross section is assigned. The transition between the two cross sections will be abrupt. When set to ON, all cross sections must consist of the same number of points. A linear transition will be applied to two cross sections defined in the Cross Section Assignment File. If the project continues past the last station defined in the Cross Section Assignment File, the last given cross section will be applied. The interpolation between cross sections makes the staking out of sections of road with superelevation and widening possible.

Crs. Movemnt - There are three choices: Left > Right, Right > Left and None. The direction chosen is for automatic selection of the next station of a cross section. Points can still be staked out at any desired direction along the cross section. None is for no automatic pre-selection.

Hinge Mode - Method for the catch point determination. The options are Normal and Not from End Pts. When Normal is selected, the points to the most right or left from the centre line are used for calculating the catch point. Select Not from End Pts, when the catch point is already available in the cross section file and therefore the points to the most right or left from the centre line are not needed for its calculation.

Log File - If this is set to ON, stake out data can be stored in a file for printing later.

Log FlName - Enter a file name for the log file.

Edit Height - If you wish to edit the elevation of a design point before staking select YES. When changing heights before staking, the Log File will be updated accordingly. This is for example useful if someone would like to manually enter the elevation of the invert level of a manhole and then stakeout the manhole’s horizontal location in relation to the horizontal alignment and the manhole’s invert level without being tied to the vertical alignment. The default setting is NO.

When all input fields have been set correctly: CONT (F1)

This will take you to the panel Road+ \ Begin where you can select the alignment files.
Selecting the Files

Panel ROAD+ \ Begin

Job - Press ENTER to open listbox (and if required create a new job) or use right and left arrow key to toggle between jobs.

Horiz.Aln. - A Horizontal Alignment File is displayed by default. If this is not the file required toggle between files by using the right and left arrow key.

Vert. Aln. - Select a Vertical Alignment File if you have one. The default is none since a Vertical Alignment File is optional.

Cross Secs - Select a Cross Section File if you have one. The default is none since a Cross Section File is optional.

Crs. Assign - Select a Cross Section Assignment File if you have one. The default is <none> since a Cross Section Assignment File is optional. In order to use a Cross Section Assignment File a Cross Section File must have been selected.

Station Eq - Select a Station Equation File if you have one. The default is <none> since a Station Equation File is optional.

CONT (F1)

The alignment checking routine starts. This routine may detect errors in one of the files and prompt an warning message.

Panel ROAD+ \ Checking Files

OK (F5) to continue checking the files or

ABORT (F1) to continue with the next panel.

If the alignment files are error free you will be automatically taken to panel ROAD+ \ Station & Offset.

Staking a Road Alignment
Staking even stations of the Horizontal Alignment

Follow the instructions in the chapters Starting the Application, Configuring Road Stakeout Parameters and Selecting the Files in order to get to the panel ROAD+ \ Station & Offset.

Initially, this panel appears as below:

If you wish to see the entire display, use the up arrow key to scroll up to the top.

Vert. Shift - Vertical shift applied to the whole alignment. Cannot be changed.
Sta. Incr. - The station increment as set in the configuration is displayed. If desired, a new value can be entered.
Station - Current station.
Element - Element for the chosen station such as Tangent, Spiral In, Curve, etc.
H Offset - Horizontal Offset to apply to the current chainage.
V Offset - Vertical Offset to apply to the current chainage.

NEXT (F2) displays the next station and its element according to the defined station incrementation.
PREV (F3) displays the previous station and its element according to the defined station incrementation.

XSEC (F4) - Starts cross section staking. See chapter "Staking a Cross Section".

STA? (F5) - Station and offset calculation for a known point (select from point ID listbox) or for a new point (determine with NEWOC (F5)). You may then use the station of that measurement to stake out a cross section point.

SHIFT + StaEq (F4) - In panel Road+ \ Station Equations, you can scroll through the station equations.

CONT (F1)

Panel Road+ \ Point Coords

Here, the design coordinates for the current station are displayed. If in the panel ROAD+ \ Configuration Edit Height is set to YES, the focus will be on the Elevation and the value can be changed before staking.
STAKE (F1)

You will automatically be taken to the Stakeout graphics screen.

Panel STAKE-OUT\xxx
whereas xxx is the name for the file stake point as defined in stake out setting.

Orient - Select a method of orientation as reference direction.

The next line shows the station to be staked.

Out / In and Right / Left - This is the range to the selected point and is updated as the antenna pole is moved.

Cut / Fill - Indicates the cut / fill to the surface. If the point elevation in the previous panel has been changed, the value for cut applies to this new elevation.

Navigate to the correct point. Place the antenna pole at the location. Be sure that the antenna is levelled. Once the desired point is located:

OCUPY (F1)

Panel STAKE-OUT \ Occupy Point

The current Point ID may be accepted or changed.

3D Quality - Observe the position quality indicator. Data should not be recorded until you are satisfied with this value. When you are satisfied:

STOP (F1)

DIFF (F2)

Pressing this key gives the difference between the designed coordinates and staked coordinates of the point. If the point elevation has been changed before staking, the value Diff Cut / Fill is calculated relative to this new elevation.
STORE (F1)

The system returns to **Panel ROAD+ \ Station & Offset** where the station has incremented by the station increment value.

Repeat the steps before to stake-out additional stations along the alignment.

Once the last point (EOP) in the Horizontal Alignment File has been staked and you continue anyway, this confirmation message will appear:

![Confirmation Message]

OK (F5) and then **CONT (F1)** to continue anyway or **ABORT (F1)** and ESC to exit the panel.

For complete information on how to use STAKE-OUT please refer to chapter "Real-Time Rover, Staking Out" in the "Technical Reference Manual".
Staking uneven stations of the Horizontal Alignment

It is often required to stake stations that are not on the even station as defined by the station interval. The steps below describe how to stake a station at an uneven station.

Follow the instructions in the chapters Starting the Application, Configuring Road Stakeout Parameters and Selecting the Files in order to get to the **panel ROAD+ \ Station & Offset**.

Panel ROAD+ \ Point Coords

Here, the design coordinates for the current uneven station are displayed. If in the **panel ROAD+ \ Configuration** Edit Height is set to YES, the focus will be on the Elevation and the value can be changed before staking.

STAKE (F1)

You will automatically be taken to the Stakeout graphics screen.

Panel STAKE-OUT \ xxx

whereas xxx is the name for the file stake point as defined in stake out setting.

Station - Manually enter the uneven station.

H Offset - Horizontal offset to be applied to current station. Looking in the direction of increasing station, apply the "right hand positive rule".

V Offset - Vertical offset to be applied to current station. A positive offset is above, a negative offset is below the normal height of the current station.

CONT (F1)
Once in the Stakeout graphics screen navigate to the correct point as normal.

Orient - Select a method of orientation as reference direction.

The next line shows the station to be staked.

Out / In and Right / Left - This is the range to the selected point and is updated as the antenna pole is moved.

Cut / Fill - Indicates the cut / fill to the surface. If the point elevation in the previous panel has been changed, the value for cut applies to this new elevation.

Navigate to the correct point. Place the antenna pole at the location. Be sure that the antenna is levelled. Once the desired point is located:

OCUPY (F1)

Panel STAKE-OUT \ Occupy Point

The current **Point ID** may be accepted or changed.

3D Quality - Observe the position quality indicator. Data should not be recorded until you are satisfied with this value. When you are satisfied:

STOP (F1)

Pressing this key gives the difference between the designed coordinates and staked coordinates of the point. If the point elevation has been changed before staking, the value Diff Cut / Fill is calculated relative to this new elevation.

STORE (F1)
Panel ROAD+ \ Station & Offset

Here, the station has incremented to the next regular station according to the defined station increment value.

For complete information on how to use STAKE-OUT please refer to chapter "Real-Time Rover, Staking Out" in the "Technical Reference Manual".
Staking a Cross Section

Follow the instructions in the chapters Starting the Application, Configuring Road Stakeout Parameters and Selecting the Files in order to get to the panel **ROAD+ \ Station & Offset**.

Station - Select a station of the horizontal alignment for which you want to stake the cross section either by using NEXT (F2), PREV (F3) or typing manually.

XSEC (F4)

If the assigned cross section for the selected station is not available in the cross section file, the following information message appears:

Initially, the panel looks as shown above. From the Cross Section Assignment File, RoadPlus knows which cross section to use for the entered station. There may however be cases where you wish to apply another cross section. Press the upwards arrow key 5 times. An additional line **Cross Sect.** appears and will be highlighted.
Cross Sect. - Use the left / right arrow keys to toggle between cross sections.

Scroll bar - Indicator for the position along the cross section template. The number and letter right of the scroll bar express how many positions left (L) or right (R) of the centre line you are working or if you are on the centre (C). A * next to it indicates that this point has been staked already.

Stake Offs. - Stake offset for a cross section point (see graphic below).

S. Offset Ht - Height mode for the stake offset. The options are: Prev. Elem., Interpolated and Horizontal (see graphic below). Horizontal is default.

Station - The current station selected for stakeout.

Δ H from CL - The horizontal distance of the point from the centre line. To stake any point along the cross section which is not pre-defined in the cross section file, enter its horizontal distance from the centre line. RoadPlus interpolates within the cross section.

Δ V from CL - The vertical distance of the point from the centre line. To stake any point along the cross section which is not pre-defined in the cross section file, enter its vertical distance from the centre line.

H Offset - Horizontal offset to be applied to current station. Looking in the direction of increasing station, apply the "right hand positive rule".

V Offset - Vertical offset to apply to current station. A positive offset is above, a negative offset is below the normal height of the current station.
Further options in this panel are:

- **CL (F3)** - Select the point of the centre template.
- **← (F2)** - Select next template point to the left.
- **→ (F4)** - Select next template point to the left.
- **SHIFT + |← (F2)** - Select extreme left template point.
- **SHIFT + CATCH (F3)** - See chapter "Staking a Catch Point".
- **SHIFT + PLOT (F4)** - Select the point along the cross section which you want to stake.

CONT (F1)

Panel ROAD+ \ Point Coords

Here, the design coordinates for the selected station are displayed. If in the **panel ROAD+ \ Configuration** Edit Height is set to YES, the focus will be on the Elevation and the value can be changed before staking.

STAKE (F1)

You will be taken to the Stakeout graphics screen.

Panel STAKE-OUT \ xxx

whereas xxx is the name for the file stake point as defined in stake out setting.
Orient - Select a method of orientation as reference direction. The next line shows the station of the horizontal alignment to which the cross section is assigned. The number and letter in brackets to the right express how many positions left (L) or right (R) of the cross section’s centre line you are working or if you are on the centre (C). A * next to it indicates that this point has been staked already.

Out / In and Right / Left - This is the range to the selected point and is updated as the antenna pole is moved.
Cut / Fill - Indicates the cut / fill to the surface. If the point elevation in the previous panel has been changed, the value for cut applies to this new elevation.

Once in the Stakeout graphics screen navigate to the correct point as normal. Place the antenna pole at the location. Be sure that the antenna is levelled. Once the desired point is located:
OCUPY (F1)

Panel STAKE-OUT \ Occupy Point

The current Point ID may be accepted or changed.

3D Quality - Observe the position quality indicator. Data should not be recorded until you are satisfied with this value.
When you are satisfied:
STOP (F1)

DIFF (F2)
Pressing this key gives the difference between the designed coordinates and staked coordinates of the point. If the point elevation has been changed before staking, the value Diff Cut / Fill is calculated relative to this new elevation.

STORE (F1)

Panel ROAD+ \ Cross Sections

Here, the next point along the cross section is set for staking out.

After staking out the last point of a cross section, the program goes automatical to panel ROAD+ \ Station & Offset and displays the next following horizontal alignment station. Start staking its cross section with XSEC (F4).

For complete information on how to use STAKE-OUT please refer to chapter "Real-Time Rover, Staking Out" in the "Technical Reference Manual".

The stakeout functionality for a catch point can be accessed from the panel ROAD+ \ Cross Sections. On how to get there follow the instructions in chapter Staking a Cross Section.

Panel ROAD+ \ Cross Section

SHIFT + CATCH (F3)

Panel ROAD+ \ Catch Point

Station - The selected station of the horizontal alignment for which the cross section has to be staked.

Cross Sect. - Name of the cross section template currently in use.

XSection - Cross section type either CUT or FILL.

Δ H from CL - The horizontal distance of the actual pole position from the centre line.

Δ V from XS - The vertical distance of the actual pole position from the cross section template.

Δ Station - The horizontal difference between the actual pole position and the selected station of the horizontal alignment.
for which the cross section has to be staked.

\(\Delta H \text{ fmHinge} \) - The horizontal distance of the actual pole position from the hinge point.

\(\Delta V \text{ fmHinge} \) - The vertical distance of the actual pole position from the hinge point.

Slope Dist - The slope distance of the actual pole position from the hinge point. Once the catch point has been found, this is the slope distance between the catch point and the hinge point.

Elevation - Height of the actual pole position.

According to the update rate, the individual values are updated automatically. Note that the highest update rate in this panel is 1 second even though the general update rate might be set to a value < 1 second.

The catch point has been found when the **\(\Delta V \text{ from XS} \)** and **\(\Delta \text{ Station} \)** are zero. Navigate to the correct point. Place the antenna pole at the location. Be sure that the antenna is levelled.
If the planned catch point cannot be accessed, use **SHIFT + ∆ St=0 (F2)**. Wherever you are RoadPlus, determines a new cross section such that ∆ St=0.

Once the desired point is located: **STORE (F3)**

Panel ROAD+ \ Catch Point

```
Point ID : catch
Local E : 6017.097 m
Local N : 2046.985 m
Ortho Hgt : 403.755 m
```

Point ID - Enter point ID under which the catch point will be stored.

CONT (F1)

Panel ROAD+ \ Catch Point

You may now wish to stake a reference point which marks the catch point.

SHIFT + REFPT (F5)

Panel Road+ \ Reference Point

```
Station : 39.440
Cross Sect. : QP000123
∆ Station : 10.558 m
∆ H fmCatch : 0.06 m
∆ V fmCatch : -0.804 m
∆ H fmHinge : -3.997 m
```

Scroll bar - Indicator for the position along the cross section template for which you are about staking a reference point. The number and letter right of the scroll bar express how many positions left (L) or right (R) of the centre line you are working or if you are on the centre (C).

Station - The current station selected for stakeout.

Cross Sect. - Name of the cross section template currently in use.

∆ Station - Horizontal distance from displayed station.

∆ H fmCatch - The horizontal distance of the actual pole position from the catch point.

∆ V fmCatch - The vertical distance of the actual pole position from the height of the catch point.

∆ H fmHinge - The horizontal distance of the actual pole position from the hinge point.

∆ V fmHinge - The vertical distance of the actual pole position from the height of the hinge point.
\(\Delta H \text{ from CL} \) - The vertical distance of the actual pole position from the centre line.

\(\Delta V \text{ from CL} \) - The vertical distance of the actual pole position from the height of the centre line.

\(\Delta V \text{ fmSlope} \) - The vertical distance of the actual pole position above the slope. Only available once the reference point has been stored.

\textbf{Slope} - Slope value.

\textbf{Slope Dist} - The slope distance of the actual pole position from the hinge point. Once the reference point has been found, this is the slope distance between the reference point and the hinge point.

\textbf{Elevation} - Height of the actual pole position.

According to the update rate, the individual values are updated automatically. Note that the highest update rate in this panel is 1 second even though the general update rate might be set to a value < 1 second.

Either navigate to a point which is suitable as reference point or until \(\Delta H \) and \(\Delta V \) from catch / hinge / centre line / slope show required values. Place the antenna pole at the location. Be sure that the antenna is levelled. If you decide not to stake and store the reference point, press \textbf{CONT (F1)}. It takes you back to the \textbf{panel ROAD+ \ Catch Point}.

Otherwise:

\textbf{STORE (F3)}
Glossary

A
Parameter A of a clothoïde. Defined as $A^2 = R \times L$ (A - parameter, R - radius, L - length of portion of curve).

Alignment
A curvilinear line describing the plan or profile view of a project. Horizontal and Vertical Alignments exist.

Backward Station Equation
See overlap equation

Batter
Slope

Carriage Way
The final driving path. Also called roadway or travel way.

Catch Point
A point marking the intersection between the design surface and the original ground.

Centre Line
The plan view alignment, also called Horizontal Alignment.

Chainage
The cumultative distance along the horizontal alignment, frequently but not always starting at zero. Also called station.

Clothoïde
A horizontal curve with constantly linear increasing curving. Defined by $A^2 = R \times L$ (A - parameter, R - radius, L - length of portion of curve).

Cross Section
A profile view of a project at a particular station.

Curve
A horizontal curve of constant radius, e.g. a portion of a circle.
Curve In
A portion of a clothoïde. Spiral transition from larger to smaller radius curve \((R_1 > R_2, \text{parameter A})\).

Curve Out
A portion of a clothoïde. Spiral transition from smaller to larger radius curve \((R_1 < R_2, \text{parameter A})\).

Curvilinear
A line consisting of any combination of tangents, curves and / or spirals for the horizontal or for the vertical of tangents, curves and / or parabolas.

Cut Slope
The surface of the project in areas of excavation with the design surface below original ground.

Design Surface
The intended shape of the completed project.

Equation
Required for a point on the horizontal alignment where the stationing is discontinuous. Gap equations and overlap equations are distinguished.

Fill Slope
The surface of the project in areas of fill with the design surface above original ground.

Finished Road Level
The level to which the final road is build to.

Forward Station Equation
See gap equation

Gap Equation
A type of station equation handling gaps in the stationing after removing a constituing element and stationing has not been re-computed.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Rate of change in elevation of the vertical alignment.</td>
</tr>
<tr>
<td>Ground Surface</td>
<td>See original ground</td>
</tr>
<tr>
<td>Hinge Point</td>
<td>The point on the cross section marking the beginning of the cut or fill slope.</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>The plan view alignment, also called centreline.</td>
</tr>
<tr>
<td>Long Profile</td>
<td>The profile alignment, also called vertical alignment.</td>
</tr>
<tr>
<td>Offset</td>
<td>The horizontal or vertical distance from a point to an alignment or cross section.</td>
</tr>
<tr>
<td>Offset Point</td>
<td>See reference point</td>
</tr>
<tr>
<td>Original Ground</td>
<td>The undisturbed surface before project construction is started as well as the actual shape of the project at the current stage of construction; also called original surface or ground surface.</td>
</tr>
<tr>
<td>Original Surface</td>
<td>See original ground</td>
</tr>
<tr>
<td>Overlap Equation</td>
<td>A type of station equation handling overlaps in the stationing after inserting a constituting element and stationing has not been re-computed.</td>
</tr>
<tr>
<td>P</td>
<td>Parameter P. This is the reciprocal of the rate of change of grade in the vertical curve. Three formulas for the calculation of P exist (see chapter Vertical Alignment).</td>
</tr>
</tbody>
</table>
Parabola
A parabolic arc. Exists only on vertical alignments.

Profile
See cross section

Reference Point
A second point often marked nearby the catch point or other point of interest since the catch point is often gone after the first earth movements. The stake is typically marked with the information that allows the user to replace the point of interest and re-create the slope information. Also known as the offset point.

Roadway
See carriage way

Shoulder
See verge

Slope
The slope is next to the verge. It links the road level with the original ground. Its slope ratio is usually higher than the one of the verge. For a fill, the slope direction corresponds to the one of the verge. For a cut, it is the opposite direction.

Spiral
A gradual horizontal transition from a tangent to a curve or two curves of different radii; optional for roads, required for railroads.

Spiral In
A gradual horizontal spiral transition from a tangent to a curve ($R_1 = \infty$, $R_2 = n$, parameter A).

Spiral Out
A gradual horizontal spiral transition from a curve to a tangent ($R_1 = n$, $R_2 = \infty$, parameter A).

Station
The cumulative distance along the horizontal alignment, frequently but not always starting at zero. Also called chainage.
Station Ahead
The stationing to be applied going forward along the alignment from the equation.

Station Back
The stationing to be applied going backwards along the alignment from the equation.

Station Equation
It defines adjustments for the Horizontal Alignment File when constituting elements have been added / removed, resulting in a gap or overlap in the stationing without re-computing stationing.

Superelevation
Modification of the normal pavement cross slope. Intended to increase comfort and safety at speed.

Verge
Next to the carriage way, the part of the road with usually a slightly higher slope ratio. Also called shoulder.

Tangent
A straight line connecting two position points (XY) or height points (Z). It touches a circle, curve, or spiral in one point and is perpendicular to the radius of the circle, curve, or spiral in this point.

Top (of Bank)
A catch point marking the catch of a cut slope.

Toe (of Bank/Slope)
A catch point marking the catch of a fill slope.

Travel Way
See carriage way

Vertical Alignment
The profile alignment, also called long profile.

Widening
Increase / decrease of road width with change in number of lanes.
Index

A

- Alignment 67

B

- Backward Station Equation 67
- Batter 67

C

- Carriage Way 45, 46, 47, 67
- Catch Point 45, 46, 47, 67
- Centre Line 67
- Chainage 67
- Clothoïde 67
- Conversion Programs 41
- Cross Section 15, 67
- Cross Section (Template) File 22, 31
- Cross Section Assignment 17
- Cross Section Assignment File 22, 35
- Curve 10, 13, 67
- Curve In 11, 68
- Curve Out 11, 68
- Curvilinear 68
- Cut 45
- Cut Slope 68

D

- Design Elements 8
- Design Surface 68

E

- Equation 68

F

- Fill 46
- Fill Slope 68
- Finished Road Level 45, 46, 47, 68
- Forward Station Equation 68

G

- Gap Equation 21, 68
- Grade 69
- Ground Surface 69

H

- Hinge Point 45, 46, 47, 69
- Horizontal Alignment 9, 69
- Horizontal Alignment File 22, 23

L

- Long Profile 69
Glossary

<table>
<thead>
<tr>
<th>Letter</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Offset 69</td>
</tr>
<tr>
<td></td>
<td>Offset Catch Point 47</td>
</tr>
<tr>
<td></td>
<td>Offset Point 69</td>
</tr>
<tr>
<td></td>
<td>Original Ground 45, 46, 47, 69</td>
</tr>
<tr>
<td></td>
<td>Original Surface 69</td>
</tr>
<tr>
<td></td>
<td>Overlap Equation 21, 69</td>
</tr>
<tr>
<td>P</td>
<td>P 14, 69</td>
</tr>
<tr>
<td></td>
<td>Parabola 13, 70</td>
</tr>
<tr>
<td></td>
<td>Profile 70</td>
</tr>
<tr>
<td>R</td>
<td>Reference Point 70</td>
</tr>
<tr>
<td></td>
<td>RoadEd 41</td>
</tr>
<tr>
<td></td>
<td>Roadway 70</td>
</tr>
<tr>
<td>S</td>
<td>Shoulder 47, 70</td>
</tr>
<tr>
<td></td>
<td>Sipral In 10</td>
</tr>
<tr>
<td></td>
<td>Sipral Out 10</td>
</tr>
<tr>
<td></td>
<td>Slope 45, 46, 47, 70</td>
</tr>
<tr>
<td></td>
<td>Slope Ratio 16</td>
</tr>
<tr>
<td></td>
<td>Spiral 70</td>
</tr>
<tr>
<td></td>
<td>Spiral In 70</td>
</tr>
<tr>
<td></td>
<td>Spiral Out 70</td>
</tr>
<tr>
<td></td>
<td>Station 70</td>
</tr>
<tr>
<td></td>
<td>Superelevation 19, 71</td>
</tr>
<tr>
<td></td>
<td>Station Ahead 21, 71</td>
</tr>
<tr>
<td></td>
<td>Station Back 21, 71</td>
</tr>
<tr>
<td></td>
<td>Station Equation 20, 71</td>
</tr>
<tr>
<td></td>
<td>Station Equation File 22, 38</td>
</tr>
<tr>
<td></td>
<td>Vertical Alignment File 22, 27</td>
</tr>
<tr>
<td></td>
<td>Vertical Alignment 12, 71</td>
</tr>
<tr>
<td></td>
<td>Travel Way 71</td>
</tr>
<tr>
<td></td>
<td>Tangent 10, 13, 71</td>
</tr>
<tr>
<td></td>
<td>Toe of Bank 47, 71</td>
</tr>
<tr>
<td></td>
<td>Top of Bank 47, 71</td>
</tr>
<tr>
<td></td>
<td>Verge 45, 46, 47, 71</td>
</tr>
<tr>
<td></td>
<td>Widening 18, 71</td>
</tr>
</tbody>
</table>

General Guide to RoadPlus - 4.0.0en
Leica Geosystems AG, Heerbrugg, Switzerland, has been certified as being equipped with a quality system which meets the International Standards of Quality Management and Quality Systems (ISO standard 9001) and Environmental Management Systems (ISO standard 14001).

Total Quality Management-
Our commitment to total customer satisfaction

Ask your local Leica agent for more information about our TQM program.